Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 20
1.
Nature ; 602(7895): 112-116, 2022 02.
Article En | MEDLINE | ID: mdl-35046577

The biological basis of male-female brain differences has been difficult to elucidate in humans. The most notable morphological difference is size, with male individuals having on average a larger brain than female individuals1,2, but a mechanistic understanding of how this difference arises remains unknown. Here we use brain organoids3 to show that although sex chromosomal complement has no observable effect on neurogenesis, sex steroids-namely androgens-lead to increased proliferation of cortical progenitors and an increased neurogenic pool. Transcriptomic analysis and functional studies demonstrate downstream effects on histone deacetylase activity and the mTOR pathway. Finally, we show that androgens specifically increase the neurogenic output of excitatory neuronal progenitors, whereas inhibitory neuronal progenitors are not increased. These findings reveal a role for androgens in regulating the number of excitatory neurons and represent a step towards understanding the origin of sex-related brain differences in humans.


Androgens/pharmacology , Brain/cytology , Cortical Excitability/drug effects , Neurogenesis/drug effects , Organoids/cytology , Organoids/drug effects , Sex Characteristics , Action Potentials/drug effects , Androgens/metabolism , Brain/drug effects , Brain/enzymology , Brain/metabolism , Cell Count , Female , Gene Expression Profiling , Histone Deacetylases/genetics , Humans , Male , Neural Inhibition/drug effects , Neuroglia/cytology , Neuroglia/drug effects , Organ Size/drug effects , Organoids/enzymology , Organoids/metabolism , Stem Cells/cytology , Stem Cells/drug effects , TOR Serine-Threonine Kinases/genetics
2.
Evolution ; 72(2): 318-336, 2018 02.
Article En | MEDLINE | ID: mdl-29265369

Oviparous, facultative egg retention enables Drosophila females to withhold fertilized eggs in their reproductive tracts until circumstances favor oviposition. The propensity to retain fertilized eggs varies greatly between species, and is correlated with other reproductive traits, such as egg size and ovariole number. While previous studies have described the phenomenon, no study to date has characterized within-species variation or the genetic basis of the trait. Here, we develop a novel microscope-based method for measuring egg retention in Drosophila females and determine the range of phenotypic variation in mated female egg retention in a subset of 91 Drosophila Genetic Reference Panel (DGRP) lines. We inferred the genetic basis of egg retention using a genome-wide association study (GWAS). Further, the scoring of more than 95,000 stained, staged eggs enabled estimates of fertilization success for each line. We found evidence that ovary- and spermathecae-related genes as well as genes affecting olfactory behavior, male mating behavior, male-female attraction and sperm motility may play a crucial role in post-mating physiology. Based on our findings we also propose potential evolutionary routes toward obligate viviparity. In particular, we propose that the loss of fecundity incurred by viviparity could be offset by benefits arising from enhanced mate discrimination, resource specialization, or modified egg morphology.


Biological Evolution , Drosophila melanogaster/physiology , Fertilization/genetics , Oviparity/genetics , Viviparity, Nonmammalian , Animals , Female , Gene Expression , Genetic Fitness , Genetic Variation , Genome-Wide Association Study , Male
3.
Ecol Evol ; 6(23): 8460-8473, 2016 12.
Article En | MEDLINE | ID: mdl-28031798

Competition between individuals belonging to the same species is a universal feature of natural populations and is the process underpinning organismal adaptation. Despite its importance, still comparatively little is known about the genetic variation responsible for competitive traits. Here, we measured the phenotypic variation and quantitative genetics parameters for two fitness-related traits-egg-to-adult viability and development time-across a panel of Drosophila strains under varying larval densities. Both traits exhibited substantial genetic variation at all larval densities, as well as significant genotype-by-environment interactions (GEIs). GEI was attributable to changes in the rank order of reaction norms for both traits, and additionally to differences in the between-line variance for development time. The coefficient of genetic variation increased under stress conditions for development time, while it was higher at both high and low densities for viability. While development time also correlated negatively with fitness at high larval densities-meaning that fast developers have high fitness-there was no correlation with fitness at low density. This result suggests that GEI may be a common feature of fitness-related genetic variation and, further, that trait values under noncompetitive conditions could be poor indicators of individual fitness. The latter point could have significant implications for animal and plant breeding programs, as well as for conservation genetics.

4.
BMC Evol Biol ; 16(1): 200, 2016 10 07.
Article En | MEDLINE | ID: mdl-27717305

BACKGROUND: Embryogenesis is a highly conserved, canalized process, and variation in the duration of embryogenesis (DOE), i.e., time from egg lay to hatching, has a potentially profound effect on the outcome of within- and between-species competition. There is both intra- and inter-specific variation in this trait, which may provide important fuel for evolutionary processes, particularly adaptation. However, while genetic variation underlying simpler morphological traits, or with large phenotypic effects is well described in the literature, less is known about the underlying genetics of traits, such as DOE, partly due to a lack of tools with which to study them. RESULTS: Here, we establish a novel microscope-based assay to survey genetic variation for the duration of embryogenesis (DOE). First, to establish the potential importance of DOE in competitive fitness, we performed a set of experiments where we experimentally manipulated the time until hatching, and show that short hatching times result in priority effect in the form of improved larval competitive ability. We then use our assay to measure DOE for 43 strains from the Drosophila Genetic Reference Panel (DGRP). Our assay greatly simplifies the measurement of DOE, making it possible to precisely quantify this trait for 59,295 individual embryos (mean ± S.D. of 1103 ± 293 per DGRP strain, and 1002 ± 203 per control). We find extensive genetic variation in DOE, with a 15 % difference in rate between the slowest and fastest strains measured, and 89 % of phenotypic variation due to DGRP strain. Using sequence information from the DGRP, we perform a genome-wide association study, which suggests that some well-known developmental genes affect the speed of embryonic development. CONCLUSIONS: We showed that the duration of embryogenesis (DOE) can be efficiently and precisely measured in Drosophila, and that the DGRP strains show remarkable variation in DOE. A genome-wide analysis suggests that some well-known developmental genes are potentially associated with DOE. Further functional assays, or transcriptomic analysis of embryos from the DGRP, can validate the role of our candidates in early developmental processes.


Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Genetic Variation , Animals , Embryonic Development/genetics , Genome
5.
Science ; 351(6275): 825, 2016 Feb 19.
Article En | MEDLINE | ID: mdl-26912886

Mota and Herculano-Houzel (Reports, 3 July 2015, p. 74) assign power functions to neuroanatomical data and present a model to account for evolutionary patterns of cortical folding in the mammalian brain. We detail how the model assumptions are in conflict with experimental and observational work and show that the model itself does not accurately fit the data.


Cerebral Cortex , Lissencephaly/pathology , Neurons/cytology , Animals , Humans
6.
Elife ; 42015 Apr 02.
Article En | MEDLINE | ID: mdl-25838129

mRNA localization is critical for eukaryotic cells and affects numerous transcripts, yet how cells regulate distribution of many mRNAs to their subcellular destinations is still unknown. We combined transcriptomics and systematic imaging to determine the tissue-specific expression and subcellular distribution of 5862 mRNAs during Drosophila oogenesis. mRNA localization is widespread in the ovary and detectable in all of its cell types-the somatic epithelial, the nurse cells, and the oocyte. Genes defined by a common RNA localization share distinct gene features and differ in expression level, 3'UTR length and sequence conservation from unlocalized mRNAs. Comparison of mRNA localizations in different contexts revealed that localization of individual mRNAs changes over time in the oocyte and between ovarian and embryonic cell types. This genome scale image-based resource (Dresden Ovary Table, DOT, http://tomancak-srv1.mpi-cbg.de/DOT/main.html) enables the transition from mechanistic dissection of singular mRNA localization events towards global understanding of how mRNAs transcribed in the nucleus distribute in cells.


Drosophila melanogaster/growth & development , Drosophila melanogaster/genetics , Imaging, Three-Dimensional , RNA Transport/genetics , Animals , Cell Nucleus/metabolism , Female , Gene Expression Regulation, Developmental , In Situ Hybridization, Fluorescence , Oogenesis/genetics , Ovary/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Time Factors
7.
Bioessays ; 37(7): 721-31, 2015 Jul.
Article En | MEDLINE | ID: mdl-25904118

I propose that the underlying adaptation enabling the reproductive strategy of birthing live young (viviparity) is retraction of the site of fertilization within the female reproductive tract, and that this evolved as a means of postcopulatory sexual selection. There are three conspicuous aspects associated with viviparity: (i) internal development is a complex trait often accompanied by a suite of secondary adaptations, yet it is unclear how the intermediate state of this trait - egg retention - could have evolved; (ii) viviparity often results in a reduction in fecundity; (iii) viviparity has evolved independently many times across a diverse array of animal groups. Focusing on the Diptera (true flies), I provide explanations for these observations. I further propose that fecundity is not traded-off to enable potential benefits of viviparity, but rather that loss of fecundity is directly selected and egg retention is an indirect consequence - a model that provides a unifying common basis for the ubiquity of viviparity.


Biological Evolution , Reproduction , Animals , Female , Fertility , Humans , Male , Viviparity, Nonmammalian
8.
Bioessays ; 37(2): 148-54, 2015 Feb.
Article En | MEDLINE | ID: mdl-25400101

A gene's "expression profile" denotes the number of transcripts present relative to all other transcripts. The overall rate of transcript production is determined by transcription and RNA processing rates. While the speed of elongating RNA polymerase II has been characterized for many different genes and organisms, gene-architectural features - primarily the number and length of exons and introns - have recently emerged as important regulatory players. Several new studies indicate that rapidly cycling cells constrain gene-architecture toward short genes with a few introns, allowing efficient expression during short cell cycles. In contrast, longer genes with long introns exhibit delayed expression, which can serve as timing mechanisms for patterning processes. These findings indicate that cell cycle constraints drive the evolution of gene-architecture and shape the transcriptome of a given cell type. Furthermore, a tendency for short genes to be evolutionarily young hints at links between cellular constraints and the evolution of animal ontogeny.


Introns/genetics , Animals , Biological Evolution , Cell Cycle/genetics , Cell Cycle/physiology , Gene Expression Regulation/genetics , Gene Expression Regulation/physiology , Humans , RNA Splicing/genetics
9.
J Exp Zool B Mol Dev Evol ; 324(4): 383-92, 2015 Jun.
Article En | MEDLINE | ID: mdl-24890454

The roots of modern evo-devo can be traced back to the comparative anatomy of the 19th century. Inheriting from this tradition, the field has maintained a mechanistic approach to understanding the origins of distinct animal morphologies. While this focus has produced a valuable body of work, we argue here that a fuller understanding of why species diverge morphologically must be centered on the selective forces driving divergence, and these forces ultimately reside in the ecological context in which organisms live and reproduce. We discuss reasons why we expect many morphological novelties to evolve largely secondarily to, and often as a by-product of, primary selection on life-history traits. By shifting the focus to proximate evolutionary causes, our perspective necessarily prioritises selection experiments as a means of empirical testing. We outline experimental approaches designed to dissect the role of ecological variables in the evolution of animal development and morphology, and we show how methods and advances in fields as diverse as population genomics and ecological stoichiometry can contribute to progress in this direction.


Biological Evolution , Ecological and Environmental Phenomena , Morphogenesis/genetics , Adaptation, Biological/genetics , Anatomy, Comparative , Animals , Islands , Selection, Genetic , Species Specificity
10.
PLoS Biol ; 12(11): e1002000, 2014 Nov.
Article En | MEDLINE | ID: mdl-25405475

Expansion of the neocortex is a hallmark of human evolution. However, determining which adaptive mechanisms facilitated its expansion remains an open question. Here we show, using the gyrencephaly index (GI) and other physiological and life-history data for 102 mammalian species, that gyrencephaly is an ancestral mammalian trait. We find that variation in GI does not evolve linearly across species, but that mammals constitute two principal groups above and below a GI threshold value of 1.5, approximately equal to 109 neurons, which may be characterized by distinct constellations of physiological and life-history traits. By integrating data on neurogenic period, neuroepithelial founder pool size, cell-cycle length, progenitor-type abundances, and cortical neuron number into discrete mathematical models, we identify symmetric proliferative divisions of basal progenitors in the subventricular zone of the developing neocortex as evolutionarily necessary for generating a 14-fold increase in daily prenatal neuron production, traversal of the GI threshold, and thus establishment of two principal groups. We conclude that, despite considerable neuroanatomical differences, changes in the length of the neurogenic period alone, rather than any novel neurogenic progenitor lineage, are sufficient to explain differences in neuron number and neocortical size between species within the same principal group.


Adaptation, Biological , Biological Evolution , Mammals/anatomy & histology , Neocortex/anatomy & histology , Animals , Mammals/growth & development , Neocortex/growth & development , Neurogenesis , Organ Size , Phenotype
11.
Cell Rep ; 6(2): 285-92, 2014 Jan 30.
Article En | MEDLINE | ID: mdl-24440719

The transition from maternal to zygotic control is fundamental to the life cycle of all multicellular organisms. It is widely believed that genomes are transcriptionally inactive from fertilization until zygotic genome activation (ZGA). Thus, the earliest genes expressed probably support the rapid cell divisions that precede morphogenesis and, if so, might be evolutionarily conserved. Here, we identify the earliest zygotic transcripts in the zebrafish, Danio rerio, through metabolic labeling and purification of RNA from staged embryos. Surprisingly, the mitochondrial genome was highly active from the one-cell stage onwards, showing that significant transcriptional activity exists at fertilization. We show that 592 nuclear genes become active when cell cycles are still only 15 min long, confining expression to relatively short genes. Furthermore, these zygotic genes are evolutionarily younger than those expressed at other developmental stages. Comparison of fish, fly, and mouse data revealed different sets of genes expressed at ZGA. This species specificity uncovers an evolutionary plasticity in early embryogenesis that probably confers substantial adaptive potential.


Evolution, Molecular , Gene Expression Regulation, Developmental , Transcription, Genetic , Zygote/metabolism , Animals , Genes, Mitochondrial , RNA, Messenger/genetics , RNA, Messenger/metabolism , Species Specificity , Zebrafish
12.
Front Neuroanat ; 7: 2, 2013.
Article En | MEDLINE | ID: mdl-23576960

Embryonic development in mammals has evolved a platform for genomic conflict between mothers and embryos and, by extension, between maternal and paternal genomes. The evolutionary interests of the mother and embryo may be maximized through the promotion of sex-chromosome genes and imprinted alleles, resulting in the rapid evolution of postzygotic phenotypes preferential to either the maternal or paternal genome. In eutherian mammals, extraordinary in utero maternal investment in the brain, and neocortex especially, suggests that convergent evolution of an expanded mammalian neocortex along divergent lineages may be explained, in part, by parent-of-origin-linked gene expression arising from parent-offspring conflict. The influence of this conflict on neocortical development and evolution, however, has not been investigated at the genomic level. In this hypothesis and theory article, we provide preliminary evidence for positive selection in humans in the regions of two platforms of intragenomic conflict-chromosomes 15q11-q13 and X-and explore the potential relevance of cis-regulated imprinted domains to neocortical expansion in mammalian evolution. We present the hypothesis that maternal- and paternal-specific pressures on the developing neocortex compete intragenomically to influence neocortical expansion in mammalian evolution.

14.
J Biomed Inform ; 46(1): 40-6, 2013 Feb.
Article En | MEDLINE | ID: mdl-22981843

Recent studies have clearly demonstrated a shift towards collaborative research and team science approaches across a spectrum of disciplines. Such collaborative efforts have also been acknowledged and nurtured by popular extramurally funded programs including the Clinical Translational Science Award (CTSA) conferred by the National Institutes of Health. Since its inception, the number of CTSA awardees has steadily increased to 60 institutes across 30 states. One of the objectives of CTSA is to accelerate translation of research from bench to bedside to community and train a new genre of researchers under the translational research umbrella. Feasibility of such a translation implicitly demands multi-disciplinary collaboration and mentoring. Networks have proven to be convenient abstractions for studying research collaborations. The present study is a part of the CTSA baseline study and investigates existence of possible community-structure in Biomedical Research Grant Collaboration (BRGC) networks across data sets retrieved from the internally developed grants management system, the Automated Research Information Administrator (ARIA) at the University of Arkansas for Medical Sciences (UAMS). Fastgreedy and link-community community-structure detection algorithms were used to investigate the presence of non-overlapping and overlapping community-structure and their variation across years 2006 and 2009. A surrogate testing approach in conjunction with appropriate discriminant statistics, namely: the modularity index and the maximum partition density is proposed to investigate whether the community-structure of the BRGC networks were different from those generated by certain types of random graphs. Non-overlapping as well as overlapping community-structure detection algorithms indicated the presence of community-structure in the BRGC network. Subsequent, surrogate testing revealed that random graph models considered in the present study may not necessarily be appropriate generative mechanisms of the community-structure in the BRGC networks. The discrepancy in the community-structure between the BRGC networks and the random graph surrogates was especially pronounced at 2009 as opposed to 2006 indicating a possible shift towards team-science and formation of non-trivial modular patterns with time. The results also clearly demonstrate presence of inter-departmental and multi-disciplinary collaborations in BRGC networks. While the results are presented on BRGC networks as a part of the CTSA baseline study at UAMS, the proposed methodologies are as such generic with potential to be extended across other CTSA organizations. Understanding the presence of community-structure can supplement more traditional network analysis as they're useful in identifying research teams and their inter-connections as opposed to the role of individual nodes in the network. Such an understanding can be a critical step prior to devising meaningful interventions for promoting team-science, multi-disciplinary collaborations, cross-fertilization of ideas across research teams and identifying suitable mentors. Understanding the temporal evolution of these communities may also be useful in CTSA evaluation.


Cooperative Behavior , Research Support as Topic
15.
Trends Ecol Evol ; 27(7): 385-93, 2012 Jul.
Article En | MEDLINE | ID: mdl-22520868

There is a remarkable similarity in the appearance of groups of animal species during periods of their embryonic development. This classic observation has long been viewed as an emphatic realization of the principle of common descent. Despite the importance of embryonic conservation as a unifying concept, models seeking to predict and explain different patterns of conservation have remained in contention. Here, we focus on early embryonic development and discuss several lines of evidence, from recent molecular data, through developmental networks to life-history strategies, that indicate that early animal embryos are not highly conserved. Bringing this evidence together, we argue that the nature of early development often reflects adaptation to diverse ecological niches. Finally, we synthesize old and new ideas to propose a model that accounts for the evolutionary process by which embryos have come to be conserved.


Biological Evolution , Embryo, Mammalian/physiology , Embryo, Nonmammalian/physiology , Embryonic Development , Animals
16.
Cereb Cortex ; 22(2): 469-81, 2012 Feb.
Article En | MEDLINE | ID: mdl-22114084

Subventricular zone (SVZ) progenitors are a hallmark of the developing neocortex. Recent studies described a novel type of SVZ progenitor that retains a basal process at mitosis, sustains expression of radial glial markers, and is capable of self-renewal. These progenitors, referred to here as basal radial glia (bRG), occur at high relative abundance in the SVZ of gyrencephalic primates (human) and nonprimates (ferret) but not lissencephalic rodents (mouse). Here, we analyzed the occurrence of bRG cells in the embryonic neocortex of the common marmoset Callithrix jacchus, a near-lissencephalic primate. bRG cells, expressing Pax6, Sox2 (but not Tbr2), glutamate aspartate transporter, and glial fibrillary acidic protein and retaining a basal process at mitosis, occur at similar relative abundance in the marmoset SVZ as in human and ferret. The proportion of progenitors in M-phase was lower in embryonic marmoset than developing ferret neocortex, raising the possibility of a longer cell cycle. Fitting the gyrification indices of 26 anthropoid species to an evolutionary model suggested that the marmoset evolved from a gyrencephalic ancestor. Our results suggest that a high relative abundance of bRG cells may be necessary, but is not sufficient, for gyrencephaly and that the marmoset's lissencephaly evolved secondarily by changing progenitor parameters other than progenitor type.


Callithrix/anatomy & histology , Callithrix/embryology , Lateral Ventricles/cytology , Lateral Ventricles/embryology , Neocortex/anatomy & histology , Neuroglia/physiology , Amino Acids , Animals , Animals, Newborn , Cell Count , Embryo, Mammalian , Excitatory Amino Acid Transporter 1/metabolism , Eye Proteins/metabolism , Ferrets , Gene Expression Regulation, Developmental/physiology , Glial Fibrillary Acidic Protein/metabolism , Histones/metabolism , Homeodomain Proteins/metabolism , Ki-67 Antigen/metabolism , Neocortex/embryology , Neuroglia/metabolism , PAX6 Transcription Factor , Paired Box Transcription Factors/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Repressor Proteins/metabolism , SOXB1 Transcription Factors/metabolism , Stem Cells/physiology
17.
PLoS Genet ; 8(12): e1003200, 2012.
Article En | MEDLINE | ID: mdl-23300473

The X chromosome is present as a single copy in the heterogametic sex, and this hemizygosity is expected to drive unusual patterns of evolution on the X relative to the autosomes. For example, the hemizgosity of the X may lead to a lower chromosomal effective population size compared to the autosomes, suggesting that the X might be more strongly affected by genetic drift. However, the X may also experience stronger positive selection than the autosomes, because recessive beneficial mutations will be more visible to selection on the X where they will spend less time being masked by the dominant, less beneficial allele--a proposal known as the faster-X hypothesis. Thus, empirical studies demonstrating increased genetic divergence on the X chromosome could be indicative of either adaptive or non-adaptive evolution. We measured gene expression in Drosophila species and in D. melanogaster inbred strains for both embryos and adults. In the embryos we found that expression divergence is on average more than 20% higher for genes on the X chromosome relative to the autosomes; but in contrast, in the inbred strains, gene expression variation is significantly lower on the X chromosome. Furthermore, expression divergence of genes on Muller's D element is significantly greater along the branch leading to the obscura sub-group, in which this element segregates as a neo-X chromosome. In the adults, divergence is greatest on the X chromosome for males, but not for females, yet in both sexes inbred strains harbour the lowest level of gene expression variation on the X chromosome. We consider different explanations for our results and conclude that they are most consistent within the framework of the faster-X hypothesis.


Drosophila melanogaster , Evolution, Molecular , Gene Expression Regulation, Developmental , X Chromosome , Animals , Chromosomes , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Embryo, Nonmammalian/metabolism , Genetic Drift , Genetic Variation , X Chromosome/genetics , X Chromosome/metabolism
18.
Bioinformatics ; 27(14): 2011-2, 2011 Jul 15.
Article En | MEDLINE | ID: mdl-21596792

SUMMARY: An essential element when analysing the structure, function, and dynamics of biological networks is the identification of communities of related nodes. An algorithm proposed recently enhances this process by clustering the links between nodes, rather than the nodes themselves, thereby allowing each node to belong to multiple overlapping or nested communities. The R package 'linkcomm' implements this algorithm and extends it in several aspects: (i) the clustering algorithm handles networks that are weighted, directed, or both weighted and directed; (ii) several visualization methods are implemented that facilitate the representation of the link communities and their relationships; (iii) a suite of functions are included for the downstream analysis of the link communities including novel community-based measures of node centrality; (iv) the main algorithm is written in C++ and designed to handle networks of any size; and (v) several clustering methods are available for networks that can be handled in memory, and the number of communities can be adjusted by the user. AVAILABILITY: The program is freely available from the Comprehensive R Archive Network (http://cran.r-project.org/) under the terms of the GNU General Public License (version 2 or later).


Gene Regulatory Networks , Software , Algorithms , Drosophila Proteins/genetics , Gene Expression Profiling , Metabolic Networks and Pathways/genetics
19.
Nature ; 468(7325): 811-4, 2010 Dec 09.
Article En | MEDLINE | ID: mdl-21150996

The observation that animal morphology tends to be conserved during the embryonic phylotypic period (a period of maximal similarity between the species within each animal phylum) led to the proposition that embryogenesis diverges more extensively early and late than in the middle, known as the hourglass model. This pattern of conservation is thought to reflect a major constraint on the evolution of animal body plans. Despite a wealth of morphological data confirming that there is often remarkable divergence in the early and late embryos of species from the same phylum, it is not yet known to what extent gene expression evolution, which has a central role in the elaboration of different animal forms, underpins the morphological hourglass pattern. Here we address this question using species-specific microarrays designed from six sequenced Drosophila species separated by up to 40 million years. We quantify divergence at different times during embryogenesis, and show that expression is maximally conserved during the arthropod phylotypic period. By fitting different evolutionary models to each gene, we show that at each time point more than 80% of genes fit best to models incorporating stabilizing selection, and that for genes whose evolutionarily optimal expression level is the same across all species, selective constraint is maximized during the phylotypic period. The genes that conform most to the hourglass pattern are involved in key developmental processes. These results indicate that natural selection acts to conserve patterns of gene expression during mid-embryogenesis, and provide a genome-wide insight into the molecular basis of the hourglass pattern of developmental evolution.


Drosophila/embryology , Drosophila/genetics , Gene Expression Regulation, Developmental/genetics , Models, Biological , Animals , Conserved Sequence/genetics , Drosophila/classification , Drosophila Proteins/genetics , Evolution, Molecular , Genes, Insect/genetics , Genome, Insect/genetics , Oligonucleotide Array Sequence Analysis , Phylogeny , Selection, Genetic , Species Specificity , Time Factors
20.
J Theor Biol ; 241(4): 707-15, 2006 Aug 21.
Article En | MEDLINE | ID: mdl-16487979

Mutational robustness is the degree to which a phenotype, such as fitness, is resistant to mutational perturbations. Since most of these perturbations will tend to reduce fitness, robustness provides an immediate benefit for the mutated individual. However, robust systems decay due to the accumulation of deleterious mutations that would otherwise have been cleared by selection. This decay has received very little theoretical attention. At equilibrium, a population or asexual lineage is expected to have a mutation load that is invariant with respect to the selection coefficient of deleterious alleles, so the benefit of robustness (at the level of the population or asexual lineage) is temporary. However, previous work has shown that robustness can be favoured when robustness loci segregate independently of the mutating loci they act upon. We examine a simple two-locus model that allows for intermediate rates of recombination and inbreeding to show that increasing the effective recombination rate allows for the evolution of greater mutational robustness.


Evolution, Molecular , Models, Genetic , Mutation , Recombination, Genetic , Animals , Epistasis, Genetic , Inbreeding , Selection, Genetic
...